
Visual Programming in an Object-Oriented Framework

Philipp Ackermann Dominik Eichelberg   Bernhard Wagner
[ackermann,eichelberg,wagner]@echtzeit.ch

echtzeit-perspectix ag
Sonneggstrasse 76

CH-8006 Zürich

MultiMedia-Laboratorium
Institut für Informatik der Universität Zürich

Winterthurerstrasse 190
CH-8057 Zürich

Abstract
Instead of scripting, a visual programming approach was explored for a component runtime
environment. It provides generic access to framework objects and supports black-box reuse
through interactive assembly. This paper describes the execution model of this intuitive
composition approach and outlines useful applications that deal with changing requirements,
short prototyping cycles, and user-friendly system reconfigurations.

Introduction
Visual programming languages [Burn95] which represent data and their flow with pictures
rather than text (source code) are not widely used because the specification of algorithms based
on a visual data flow is very limited. The visual representation of procedural abstractions is not
appropriate for large systems. This disadvantage is reduced in object-oriented systems because
objects encapsulate state (data) and behavior (methods/algorithms) so that visual programs are
no longer used for algorithmic specification, but may be applied for object composition by
defining inter-object relations.
The MET++ multimedia application framework [Acke96] is a C++ class library that contains
several frameworks. A framework is a reusable and extendable abstraction built of preinte-
grated, collaborating objects. Developers may extend a framework by subclassing existing
abstractions and adding their specific functionality. Because the internals of parent classes must
be understood by the developer, subclassing is called white-box reuse. Like many other frame-
works, MET++ matured over time and, besides generic abstractions, a lot of ready-to-use clas-
ses were developed. New functionality is often obtained by instantiating and composing ob-
jects without knowing their internals. In MET++, this black-box reuse is supported 1) by
framework- or domain-specific editors, and 2) in a generic approach by a visual programming
environment [Wagn96] in which configurations of objects are dynamically assembled.

Visual Component Runtime Environment
We understand a component as an object or object cluster which is embedded in a run-time
environment that provides functionality and dynamic behavior to the component. Frameworks
often integrate such a runtime environment. For example. a presentation framework supports
the display, event handling, and automatic layout of graphical components (GUI elements)
based on hierarchical grouping; a synchronisation framework manages the temporal presen-
tation of animations and time-dynamic media (audio, video) based on temporal composition
structures; an audio framework handles the signal processing based on a source-filter-sink
media flow. In such frameworks or component environments, configuring applications is
mainly realized by object composition. To avoid long compile/link cycles, component environ-
ments often provide an interpreted scripting language to support dynamic object configuration.
Due to the following two reasons, scripting is not favored in MET++:
1) Considering the end-user's view-point, the formal approach of scripting languages is not
easy to understand. A point-and-click interface with the relations clearly evident from visual
cues is more intuitive and therefore more user friendly than scripting.
2) Opening a class library to scripting introduces countless stub procedures to order to make
the important methods of existing classes accessible to the scripting language. Furthermore,
two separate protocols need to be kept consistent, and they introduce redundancy which may
confuse the developer if the protocols are (slightly) different to use.



The visual component runtime environment of MET++ is an orthogonal extension to the
existing frameworks. It sits on top of the MET++ class libraries as an additional layer and
provides a generic run-time environment for object composition. The execution model is based
on a data flow approach. A visual program graphically represents components and their
relations. Relations are defined by wires between input/output ports. There are no messages or
objects passed between components. Components communicate with each other by sending
simple data types such as integer/float values or character strings through the wires. A port
typically encapsulates an instance variable of an object or a parameter of a function.

Visual Wrappers for Framework Objects
The visual representation of a component is called data unit. The DataUnit class may operate
as a wrapper to a framework's object or as a wrapper to a procedure. A data unit models a
wrapped object as a mathematical function with independent and dependent variables according
the expression (d1, d2,…, dn) = f(i1, i2,…, im). As an approximation, independent and
dependent variables can be seen as input and output values. A data unit transforms the input
values to output values by calculating the dependent variables as a result of a function of the
independent variables. A data unit evaluates its "function" and fires its dependent values as
soon as all independent values are set. Some data units trigger their evaluation on specific
events, e.g. on user interaction, timer interrupts, or on state changes in an object (change
propagation). Since the flow in the visual program is bidirectional, a data unit also has an
"inverse function". Filters which transform input-output values in both directions are an
obvious representation in this model. Examples are mathematical transformations (multi-
ply/divide; sin/arcsin; …) and control structures (if-then-else, threshold).   Wrapped objects are

Figure 1: Example of a visual program. The number field
is detached from its data unit.

also modeled as functional representa-
tions. A wrapper of a GUI element such
as a knob evaluates its "function" in case
of a user interaction or if its independent
variable is triggered. The "function" gets
the value of the knob and sends it out of
the dependent port. But the knob as GUI
element can also work as a visual indi-
cator. If the dependent port receives
data, the "inverse function" evaluates the
data value and sets the rotation of the
knob accordingly. The independent port
of the knob wrapper works as trigger to
fire the knob's value. An independent
port can also act as an index into a list.
Depending on the received value, the
result of the output variables changes. A
relation in a data base can therefore be
modeled as such a functional abstraction.

A port holds meta information about its data type, value domain, and step size. It is therefore
possible to actively iterate over a port's domain. In Figure 4, the text and 3D mappers iterate
over a 2-dimensional array to visualize its data. Because only  simple types are sent through the
communication wires, and ports additionally provide automatic type conversion, a port can be
connected to any other one without any restriction. This generic feature allows a highly flexible
configuration of components even from different frameworks. GUI components can be
combined with temporal media components, data containers can be connected to generic filters,
3D objects can be related with external devices (e.g. MIDI devices) that are wrapped by a data
unit, etc. Developers can add their own type of data unit by subclassing from an abstract
DataUnit class which handles the ports and the triggering mechanism. New wrappers are
built by adding the needed ports and by overwriting the EvaluateDependent() and
EvaluateIndependent() methods.



Interactive Component Editor
Visual programs are interactively realized in a specific editor (Figure 1) which displays a
component diagram with wires connecting ports. Ports are titled with a name prompting their
meaning to the user. Data units (wrappers) are generated by pull-down menus or by drag&drop
of an object into the editor window. All visual programs are "live": they are fully operational
without compile/link cycles. Graphical user interface (GUI) elements can be separated from the
visual program. Within the pictorial representation of a data unit, GUI components (e.g.
knobs, buttons, sliders, edit fields, ...) are detached by clicking on the left button. A detached
GUI element can then be placed in any other window by a drag&drop operation. The
appearance of GUI components can be visually programmed. E.g., the radio buttons on the left
side of Figure 2 were defined by sending character strings to its "append" port. Text entries can
be removed by sending a number as index to the "delete" port. Check boxes and pop-up menus
are defined in the same way.

Figure 2: Examples of GUI components wrapped as data units.

Application Scenarios
The visual programming enviroment provides several wrappers to existing classes of the
MET++ multimedia application framework. It includes data units for visual objects, user inter-
face components, 3D graphics objects, cameras, lights, and time-dynamic media types such as
animations, audio, note sequences, etc. A visual program and its wrapped objects can be stored
to a file which we call an executable document. By reading an executable document, all saved
objects and their relations are instantiated and work immediately (Figure 3). The visual
program approach of MET++ is used for 1) the definition of multimedia presentations, 2) data
visualization and sonification as seen in Figure 4, 3) the creation of interactive and dynamic
virtual reality scenes, 4) prototyping of graphical user interfaces, and 5) as a generic media
patcher for realtime performances. All these applications profit from the intuitive, fast and
playful access to the properties of objects and the ability to interactively define relations,
constraints, interactions, and dynamics without having to write code. Figure 3 shows an
example of an executable document created with an MET++-based multimedia authoring tool.
A WWW browser which can present such executable documents embedded in HTML pages
was a best of show finalist at CeBIT '96 [BYTE96].

Conclusion
Our visual programming enviroment, which is based on a data flow approach, has proven that
component-oriented composition does not have to be a language feature but can be built as
layer on top of existing libraries and applications. Visual wrappers to object-oriented structures
allow the interactive configuration of object relations even for end-users.

References
[Acke96] Ackermann, Ph., "Developing Object-Oriented Multimedia Software – based on the

MET++ Application Framework", dpunkt-Verlag, Heidelberg 1996.
[Burn95] Burnett, M., M., Goldberg, A., Lewis, T., G., "Visual Object-Oriented Program-

ming", Manning Publications, Greenwich, 1995.
[BYTE96] International BYTE magazine, “Best of CeBIT ‘96”, p. 32, June 1996.
[Wagn96] Wagner, B. et.al., "Black-Box Reuse within Frameworks based on Visual Pro-

gramming", Proceedings of the Component Users's Conference '96, München 1996.



Figure 3: A visual program that implements Celsius to Fahrenheit conversion. GUI components of the
data units are detached and placed into another window with drag&drop. If this "executable

document" is loaded, the visual program will not be displayed.

Figure 4: Bidirectional data flow between a data array, a 3D view, and a spreadsheet in a data visuali-
zation application. The mappers automatically iterate over the index of the two-dimensional array and
dynamically create the corresponding visual representation. Moving a 3D object will immediately be

reflected in the spreadsheet and vice versa.


