
Black-Box Reuse within
Frameworks based on Visual

Programming
presented at CUC '96, Munich

Bernhard Wagner bwagner@ifi.unizh.ch
Ian Sluijmers sluijm@ifi.unizh.ch
Dominik Eichelberg eichel@ifi.unizh.ch
Philipp Ackerman ackerman@ifi.unizh.ch

University of Zurich
Dept. of Computer Science

MultiMedia Laboratory
Winterthurerstr. 190

CH-8057-Zürich
Switzerland

VOICE +41-1-257-4569
FAX +41-1-363-00-35
http://www.ifi.unizh.ch

2

Abstract

Application frameworks allow
structured reuse of object-oriented
design and source code, provided that
the developer understands the source
code and has knowledge of the frame-
work's design conventions. The notion
“white-box reuse” refers to the
process of developing software by
writing subclasses with the knowledge
and understanding of the internals of
the parent classes. When applying
black-box reuse however, new
functionality is obtained by composing
objects without knowing their
internals, only their interface. We took
the idea of object composition a step
further by developing a visual
programming environment for the
easy reuse of a multimedia application
framework's classes. Instantiations of
these classes are represented as
black-box components in our visual
programming environment.

1. Introduction

1.1. The Multimedia Application

Framework MET++

Our visual programming envi-
ronment is based on the existing
multimedia application framework
MET++ [Acke95] which is an
extension to the ET++ application
framework [Wein92, Gamma92]. Event
handling and message passing
between the framework's objects fall
under the responsibility of the frame-
work and are already preimple -
mented. Within multimedia ap-
plications, events occur as discrete
data resulting from user interaction,
from data being read off storage media
and from external input devices such
as mouse, keyboard, and MIDI in-
struments. Values generated by time
functions controlling the temporal

behaviour of media are also considered
as events. Most standard multimedia
application functionality is provided,
including time synchronisation and
multimedia-specific user interaction
besides multiple undo of commands
and standard editor functions such as
cut/copy/paste and drag&drop. A
variery of editors is readily available
for all supported media, so the media-
specific manipulation can be reused by
the application programmer.

1.2. Object Composition in Application

Frameworks

Black-box reuse or reuse by in-
stantiation is easier to apply than
white-box-reuse, since the internals of
the involved classes don't have to be
understood, only their interfaces. If
several objects are linked in a black-
box manner, the term object
composition is often used. Through
object composition it is possible to
change a constellation of objects at
runtime. Also, object composition is a
valuable alternative to multiple
inheritance when properties of several
classes should be combined. In ET++
and MET++ object composition is
heavily used. While black-box-reuse is
easier to apply than white-box-reuse,
the understanding of the interplay
between instantiated black-box-
components is harder than un-
derstanding an inheritance hierarchy
by looking at the source code of the
involved classes. For this reason
runtime-debugging support has been
integrated into ET++, that allows to
display the actual composition of
objects in a running application
[Gamma92].

1.3. Visual Object Composition

Our experience showed that
programming of applications based on
application frameworks like MET++ is

3

hard to learn. The difficulty to teach
and encourage black-box-reuse of
MET++ classes lead to the idea of
representing the reusable objects as
graphical components with their
interconnections depicted as wires.
This way of presenting the
possibilities and supported media of
MET++ is much more playful and
intuitive than confronting a newcomer
with the bare C++ interfaces. The idea
of object composition is presented in
an interactive graphical way.

1.4. Wrappers

To make the existing framework's
classes available in the visual
programming environment we applied
the Wrapper or Adapter design
pattern [Gamma95]. Wrappers are
used to offer a different interface for
an existing class. The Wrapper-
technology has successfully been
applied before in MET++ for wrapping
multimedial time-dependent data
streams, e.g. audio, MIDI, video, time
functions for the control of geometric
aspects of 2D- and 3D-graphics. The
new interface allows wrapped classes
to be combined into a generic
temporal layout system. Whenever a
new time-dependent object is
developed and properly wrapped (i.e.,
by implementing a set of abstract
methods for start, stop, calculation of
durations, etc.), it can be used in the
existing temporal layout system with-
out changing the latter [Acke95]. The

visual programming environment also
requires a specific interface, so the
Wrapper design pattern was applied
here as well. Now all media that have
been prepared for usage in the visual
programming environment have two
kinds of wrappers: a temporal
wrapper and a visual pro gramming
wrapper. These two kinds of wrappers
represent orthogonal access methods
to the wrapped media. An application
of this orthogonality is shown in
Figure 1. The temporal wrapper
shows an (interpolated) time function
to control the z rotation of the small
gear in MET++'s Time Composition
View. The Visual Program below it
shows two data units that wrap the
two gears. The small gear is con-
trolled by the time function and the
changes are propagated through a
scaling of -0.5 to adapt the rotation
speed for the larger and slower gear.
In a conventional animation system
the two gears would have to be
animated separately and if one gear's
speed would change, the speed of the
other would have to be adapted
manually. In our environment the
relations between objects are specified
in the visual program and only the
keyplayers are animated. The
relations defined in the visual program
are maintained and so allow to specify
an imat i ons r edundancy - f r e e .
Animations can be specified and
manipulated in a more structured way
than animating each object with its
own time function.

4

Figure 1: A temporal wrapper for a 3D object in MET++'s Time Composition View for animation and two
wrappers for manipulation from within a Visual Program.

2. Building Blocks

A visual program in our envi-
ronment is defined by a data flow
diagram. The components of a vi sual
program are data units receiving,
generating or processing events. New
instances of data units which wrap
objects of the framework can be
created in a specific editor with menu
and drag&drop commands. They ap-
pear as two-dimensional graphic
representations and can be wired on
the screen. Bi-directional connections
are made between ports belonging to
different data units to allow
communication between them. Ports
have a title prompting their meaning

to the user and an arrow-like
representation which determines
whether they are meant for input,
output or both.

Object wrappers are grouped
according to their purpose, i.e., data
repositories, filters, and mappers.

• Data repositories include all kinds
of discrete data including a number of
file formats, arrays, single data
elements, constants, user interface
components, and system functions
(e.g. timers) that generate events and
hardware port access, e.g. reading in-
put from MIDI and audio ports.

• Filters are a collection of data
processing units. They perform

5

functions on data either in the
mathematical sense or as control
structures with built-in conditions
(e.g. if-the-else and thresholds).

• Mappers provide capability to map
data to di f ferent kinds of
representations (e.g. 3-D graphics, 2-
D bitmaps, text tables, audio, and
MIDI output).

3. Executable Documents

Certain wrappers include user
interface components that can be
detached from the data unit's
representation. They may even be
separated completely from the visual
program by dragging-and-dropping
them into a dedicated user interface

window. A button is provided to
highlight the component if it needs to
be located among others. These fea-
tures provides the basis for a flexible
user interface builder where exe-
cutable documents can be created.
Executable documents contain
multimedial data types such as text,
GUI elements, audio, animations, etc.
whose behaviour is controlled by visual
programs. The appearance of GUI
components is also visually pro-
grammed. E.g., the radio buttons on
the left side of Figure 2 were defined
by sending character strings to its
"append" port. Text entries can be
removed by send ing a number as
index to the "delete" port. Check
boxes and pop-up menus are defined
in the same way.

Figure 2: Examples of GUI components wrapped as data units.

A simple typical example for an
executable document is the Celsius to
Fahrenheit converter shown in
Figure 3. Dynamics of such executable
documents rely on object composition
only, no compiling, linking, or script
interpretation is needed. As soon as
the user creates a new instance of an
object in the visual editor, it “comes
to life” and reacts on any messages
passed to it or any in teraction via its
user interface. In this sense, visual
programming moves up to a higher
level of abstraction as the future user
of a program and its developer can

communicate interactively while
implementing and designing the
software simultaneously. The
specification and the implementation
are no longer separated.

We consider these visually pro-
grammed executable documents as an
alternative to Web-programming like
Java and CGI. While these languages
still require programming skills, our
environment allows to visually specify
a page's behaviour. A Web-browser that
supports this kind of executable
documents as plug-ins has been
developed.

6

Figure 3: A visual program that implements Celsius to Fahrenheit conversion. GUI components of the data
units are detached and placed into another window with drag&drop.

4. Data Flow

The object-oriented principle
(making the objects responsible for
their functionality and only passing
messages) is transferred to the design
o f o u r visual programming
environment. This does lead to
specific problems concerning the
order of execution in a program.
Triggering and data type conversion is
strictly handled locally within the
ports of the wrapper. Data types are
kept simple. Only standard numeric
and alphanumeric types are used. No
sending of scripts or specific
synchronization triggers is needed. A
l o ck ing mechanism prevents
messages from looping endlessly in
cyclic connection patterns. This
would occur due to back and forth
triggering as events are passed bi-di-
rectionally.

4.1. Bidirectionality

Data flow diagrams and similar
representations usually contain
directed connections, allowing the

flow of data in one direction only. Our
approach provides bidirectional
connections between data units
allowing them to pass messages in
both directions regardless of their
position in the data flow. This implies
bidirectional behaviour of data units.

Data are units acting as data
repositories (array, NetCDF file
[NetCDF], data base), event generators
(timer, clock, music in/out, random,
audio in/out) and user interface
components (entry fields, sliders,
knobs, joystick, different kinds of
buttons). Bidirection is possible for
repositories: They can be read and
written. User interface components
are bidirectional as well: if a certain
value is fired at their I/O-port, the
corresponding state is depicted in the
visual component. Event generators
do not allow bidirecion.

Filters need to be bidirectional,
because they are placed in the path of
data flow. Data can pass through them
both ways. If the Filter’s function has
an inverse function defined, it will be
performed if data arrives at the output
port instead of the i n p u t port. As
discussed in section 1.4. a class has to

7

be wrapped to make it compatible
with the visual pro gramming
environment. Wrapping here mainly
consists of implementing the abstract
methods
EvaluateIndependentValues() and
EvaluateDependentValues() which
are called when all dependent or
independent ports have been set,
respectively. In the case of a filter for
calculating the sinus function
EvaluateDependentValues()
calculates the sin(x) function and
EvaluateIndependentValues()
calculates the arcsin(y) function using
the provided independent value x, or
dependent value y, respectively.

Mappers are designed to read data
from a set of input ports and map it to
a specific visualization or sonification.
This interface generally provides an
interactive mode, allowing the
manipulat ion of the v isual
representations. The resulting events
will be sent out of the ports of the
mapper invoking an update of any
connected object.

Bidirectional behaviour can be
inhibited for special situations. For
example, it may not be desirable to

write to certain files or to change the
system time.

The following example illustrates
the bidirectional behaviour of mappers
(Figure 4): Given an array containing
five sets of 2-D data. It is represented
by an independent port ranging from
0 to 4 and two dependent ports, one
supplying x-values, the second
supplying y-values. To map this array
to a three-dimensional representation,
the mapper's iterator port is
connected to the index of the array,
the dependent ports one by one to the
x- and y-ports of the mapper. As a
result five 3-D objects would become
visible each at their own co-ordinates
in the 3-D space. Each dependent
port of a mapper has its default value
in case nothing was connected to it.
In Figure 4 the z-coordinate remains
zero, width, depth, and height remain
1. The array is also connected to a
text table mapper. The 3D elements
can be moved within the 3D space to
change values of the array. Such
changes are immediately reflected in
the table. Vice versa, editing of values
in the table will force updates of the
3D view.

8

Figure 4: Bidirectional data flow between a data array, a 3D-view, and a spreadsheet.

4.2. Triggering of Data Units

Some visual programming en-
vironments use specific control types,
e.g. "BANG" in Max [Zica95] and
"PING" in HP VEE [Helsel95]. This
kind of explicit control information
can be useful in developing real-time
applications, but has the disadvantage
that it has to be handled separately. It
implies another step of thinking in
developing programs, because the
firing of data can result in bugs, if a
function is programmed to fire before
it has received all the data it needs.

Our approach has neither specific
control types nor is the order of
execution dependent on the

placement of the objects in the editor.
It is a simple philosophy: everything is
handled locally within the data units.
Each port has a trigger that is either
set or reset. A data unit will fire when-
ever all its independent ports or, in
the other direction, when all its
dependent ports have received data,
meaning they have been triggered.
The underlying object's firing method
will call the firing method of the con-
nected objects, whose firing method
will do the same and so on until every
object has fired. Since links are
bidirectional, this could result in a
back-and-forth firing ad infinitum. To
avoid this, a locking mechanism is
implemented in the port. Infinite
loops can be avoided this way and
"wild" cyclic connection patterns
cause no harmful effects.

9

4.3. Independent and Dependent Ports

In the editor of our visual pro-
gramming environment, data units
provide ports for their in-
terconnection. Common data units use
two types of ports: independent and
dependent. The type is indicated by a
defined colour of the port's
representation. For data units acting
as data repositories (Data) and repre-
senting the contents of files and
arrays, a set of independent and
dependent ports is generally used for
addressing the data. The independent
ports work like indices of an array (or
record). The dependent ports behave
like the array’s values. A data unit
evaluates its dependent values as soon
as all its independent ports' trig gers
are set. Still considering the array
example, this would mean that the
value or the set of values at the
indexed position in the array would be
fired as soon as all its indices are set.
To maintain the bidirectionality
discussed in 4.1, the firing can be
induced by triggering the dependent
ports with a set of values. As soon as
they are all triggered, the corre-
sponding independent indices are
searched and fired from the
independent ports.

Filters typically are functions, a
great many of them are mathematical
functions. For simplicity reasons, only
one-dimensional filters are described
(and implemented so far): y = f(x). x is
the independent value, and y is de-
pendent. The filters have one in-
dependent and one dependent port.
Their triggering behaviour is simple:
when a value x arrives at the
independent port, f(x) is fired from
the dependent port. The opposite
direction may be possible (if the
corresponding inverse filter function x
= f-1(y) is defined) and if so, f-1(y) is
fired from the independent port.

Mathematically expressed, the
relationship between independent
and dependent ports can be
represented as a set of n functions of
arity m >= 1:

(y1, y2, ..., yn) = f(x1, x2, ..., xm); (1)

where xi are the independent and yj
the dependent variables and n is not
necessarily equal m. Each of the
independent variables xi has its own
domain di with cardinality Xi and each
of the dependent variables yj its range
rj with cardinality Yj. In different
terms, the set of ranges rj can be
regarded as a family indexed by the
cartesian product (product set) d of
the domains dj:

f: d1 × d2 × ... × dm → r1 × r2 × ... × rn; (2)

The cardinalities D and R of the
domain product set d and the range
product set r, respectively, are
calculated as follows:

D = X1 * X2 * ... * Xm; (3a)

R = Y1 * Y2 * ... * Yn; (3b)

This leads us to a specialization of
the independent port: the iterator. It
extends the role of the independent
port allowing data mappers to be built.

4.4. Mapping and Iterators

Mapping is invoked as soon as a data
unit is connected to a data mapper.
For each independent port x i of the
data source, an iterator port is
allocated in the data mapper. Each
iterator analyzes the independent port
it is connected to and registers its
domain di. The cartesian product P of
these domains is built, and D
representation entities according to
(3a,b) are prepared. Next, the el-
ements of d (a set of index-sets) are
stepped through and fired from the

10

iterators to the data unit connected to
the data mapper. The data unit
responds by sending its dependent
values corresponding to the received
index set. The dependent values are
then applied to the representa tions
influencing their properties.

Another example will illustrate the
mapping process (Figure 5): Two
arrays, one containing six, the other
containing four sets of values, are
connected to an image mapper. Each
array has one independent index port.
The image mapper prepares D = 6 * 4
= 24 pixels in a bitmap representation
and then iterates over all the index
pairs making the data arrays fire the
indexed values giving each pixel its
colour. Note that the source is not a
two-dimensional 6 * 4 array, but two
one-dimensional arrays of 6 and 4 val-
ues, respectively. The image mapper
now combines each of the first array's
values with each of the second array's
values, resulting in D = 6 * 4 = 24
combinations.

Figure 5: Mapping over two indices with different
domains using an image mapper.

A data mapper has a generic
architecture to guarantee a high
degree of flexibility when connecting
data units. Different data sources can
be connected to the same mapper and
so the iterators and dependent ports
need to be dynamically generated as
connections are made. Data mappers
have one dummy port marked “void”.
Connecting anything to a void port will
make it change its name to “iterator”
in the independent case or will take
the name of the connected port if it is
dependent. The void port is
regenerated and stays free for further
connections (Figure 6).

Figure 6: Connecting a mapper: dynamic generation of iterator ports.

11

4.4. Data Types

As data types integer, short, long,
double, float, boolean, and string are
supported. A data unit's ports hold
meta-information on the data type
used. Types are converted as the data
flows through the program. If a port is
not designed to convert to a certain
data type (e.g. converting a string
"anything" to an integer), a message
box will appear on arrival of wrongly
typed data, informing the user on
what type is expected.

The set of data types is kept simple
on purpose. No message script types
l ike in MAX [Zica95] are
implemented, because scripting
components give the developer a
certain "degree of freedom" which
may let the complexity of the language
get out of hand. The goal is to keep
visual programming as visual as
possible.

5. Applications

The visual programming enviroment
provides several wrappers to existing
classes of the MET++ multimedia
application framework. It includes
data units for visual objects, user
interface components, 3D graphics ob-
jects, camera, lights, and time-
dynamic media types such as
animations and audio.

Summary and Outlook

By combining object-oriented
framework technology with visual
programming, we realized an en-
vironment that allows black-box reuse
of an application framework’s classes.
This takes reuse a step further
t o w a r d s r a p i d application
development. Visual programs can
potentially pass messages to any object
of the framework once a wrapper is
provided for it. Acting as a general

media patcher, the visual editor will
enable events to be collected, pro-
cessed and distributed among the
objects of the framework. In the
future, the visual programming
environment should become a
distribution tool of events in the
framework where anything can be
processed and mapped to ev erything
(" M e d i a Pa tcher ") . V i sua l
programming can be used to define
t h e behav iour o f temporal
dependencies, user interactions, as
well as a general visualization tool for
data sets. Further work is going on to
wrap more and more of MET++'s
c lasses and to al low the
modularization of a dataflow-diagram
by creating sub-diagrams made up of
diagrams themselves.

Visual programs in executable
documents may even be an alternative
to scripting and program distribution
which is now dominated by the hype
about Java.

12

References
[Acke95] Ackermann, Ph., "Object-Oriented Synchronization of Audio-Visual Data in

a Multimedia Application Framework", Dissertation at University of Zuerich,
1995.

[Gamma92] Erich Gamma: "Objektorientierte Software-Entwicklung am Beispiel
von ET++" Springer Verlag; Berlin Heidelberg; 1992.

[Gamma95] Erich Gamma et al.: "Design Patterns", Addison-Wesley, Massachusetts,
1995.

[Helsel95] Robert Helsel: "Graphical programming: a tutorial for HP VEE"; Prentice
Hall, 1995.

[NetCDF] is a special self-describing file-format for exchange of scientific data
across different platforms. It is maintained by unidata. See
http://www.unidata.ucar.edu/packages/netcdf

[Wein92] Weinand, A., "Objektorientierte Architektur für graphische
Benutzungsoberflächen", Springer Verlag, Heidelberg, 1992.

[Zica95] Zicarelli, D., Puckette, M., "Getting Started with MAX", Opcode Systems
Inc., Palo Alto, California, 1995.

