
MET++ Multimedia Application Framework

Why Use Application Frameworks 1

character-oriented terminals graphical user interface workstations

conversation metaphor

model world metaphor

batch processing
WYSIWYG

$ troff -man -rs1 -rV2 man.5

.SH NAME

ls \- list the contents of a directory
.SH SYNOPSIS

.B ls

[

MET++ Multimedia Application Framework

Why Use Application Frameworks 2

graphical user interfaces (GUI) make
applications

+ easy to learn
+ intuitive to operate

BUT:
- take up to 88% of programming time

due to semantic gap between window system and application

#include <X11/Xlib.h>

#include <X11/Xutil.h>
 …

 XSetStandardProperties (display,top,…,&myhint);
 mygc = XCreateGC (display,top,0,0);

 XSelectInput (display,top,ButtonPressMask |…|ExposureMask);
 XMapRaised (display, top);/* Window mapping */

 XMapWindow (display, win1);

 while (done == 0){ /* Main event-reading loop */
 XNextEvent (display, &myevent); /* Read the next event */

 switch (myevent.type){/* process keyboard mapping changes */
 case : MappingNotify

 XRefreshKeyboardMapping (&myevent);
 …

GUI

APP

MET++ Multimedia Application Framework

+ widgets
+ standard look (~ feel ?)
+ application and window system are decoupled and thus
more portable

It is crucial, whether toolkits are extensible in a
structured manner.

Why Use Application Frameworks 3

Toolkits with APIs

MET++ Multimedia Application Framework

Why Use Application Frameworks
Strategies to enhance structuring/flexibility
of toolkits:

4

finer granularity of toolkit functions
 MakeWinArea(…);AddBorder(…);AddVertScrollBar(…);…

configurability of toolkit functions
 MakeWindow(x,y,w,h,border,bothScrolls,closeBox,…);

modification of toolkit's source code
 $ vi XYZtoolkit.[h,c]

program sceletons
 $ vi XYZsceleton.c

MET++ Multimedia Application Framework

- hardly applicable when high semantic feedback required
- hardly extensible
- an additional language has to be learned by the
programmer

Why Use Application Frameworks
User Interface Management Systems (UIMS)

5

MET++ Multimedia Application Framework

Why Use Application Frameworks
Bertrand Meyer's "Open/Closed" Principle

6

• A system's components have to be closed, so they can be
offered with a fixed and defined interface in a library.

• A system's components have to be open, so they can be
adapted to new requirements without affecting already
existing clients.

MET++ Multimedia Application Framework

Why Use Application Frameworks 7

Bertrand Meyer's "Open/Closed" Principle
Classes are closed

"black box" reuse or reuse by instantiation
client uses a class without changing it

Classes are open
"white box" reuse or reuse by inheritance
client extends/changes a class when subclassing

Button *b= new Button("Print");

Window *w= new Window(400,300);

w->Add(b);
w->Show();

class myButton : public Button {

void Draw() {

 Button::Draw();
 // draw fancy border

 // …

}

MET++ Multimedia Application Framework

Why Use Application Frameworks
Concepts of Object-Oriented Programming
Languages

• data abstraction
toolkit's components = classes

• inheritance
programming by difference:
structured approach to extensibility

• polymorphism
lean programming interface

• dynamic binding
structured replacement for hooks

8

MET++ Multimedia Application Framework

PROBLEM DOMAIN

• not independent but related classes (design patterns)

• finding abstractions by looking at
 several applications of same

Why Use Application Frameworks
(Finally!) Frameworks

9

Application

Toolkit
Application-Framework

A
p p l i

c a
t i

o

n

MET++ Multimedia Application Framework

Visual Programming
Reuse in Application Frameworks
White-box Reuse

Reuse by Subclassing
The internals of parent classes are visible.
Dependency of changes in the implementation / interface.

Black-box Reuse
Object Composition

The interfaces of components are known, their internals aren't.
Dependency of changes in the interfaces only.
Configurability at runtime

Visual Programming
Visual Object Composition

Interactive connecting of pluggable components.
Advantages of black-box reuse combined with comfortable handling, i.e. no
coding, compiling, or linking, easy specification.

10

MET++ Multimedia Application Framework

11Visual Programming
Building blocks
Data Units

Data Repository
Read/write (Single Data Item, Data Array, NetCDF, etc.)
Read only (Constants, Timer, Clock)
User interface component (menu, slider, checkbox, radio button, etc.)

Data Filter
Basic arithmetic functions (Scaler, Shifter)
Mathematical functions (trigonometric, logarithmic, etc. and their inversions)
Conditional functions (if-then-else, threshold)

Data Mapper
2D, 3D, Audio, MIDI, TextTable

Data Ports
Dependent
Independent

Connectors
Bi-directional

MET++ Multimedia Application Framework

12Visual Programming
Realization
• How to make the Framework's classes available in the visual programming
environment

Wrapper design pattern

• How to trigger messages between interconnected components

Special requirement: bidirectionality
Mathemathical Model:
 (y

1
, y

2
, …, y

n
) = f(x

1
, x

2
, …, x

m
);

 (x
1
, x

2
, …, x

m
) = f-1(y

1
, y

2
, …, y

n
);

Wrapper Wrapper

WrapperWrapped
Class

MET++ Multimedia Application Framework

13Visual Programming
Data Types

• short

• long

• float

• double

• char

• string

MET++ Multimedia Application Framework

14Integration with MET++
Integration on two levels
User Interface Builder

Drag & Drop of GUI-components
Separation of GUI components and visual program

Media Wrappers
Visual Objects
Temporal Events

MET++ Multimedia Application Framework

15Integration with MET++
Separation of User Interface and Visual
Program

MET++ Multimedia Application Framework

16Bidirection
Bidirectional data flow
Repositories

Reading
Writing

User Interface Components
Manipulation by user
Setting by visual program

Filters
Function, e.g. ex

Inverse, e.g. ln(x)

Mappers
Setting by visual program
Manipulation by user

MET++ Multimedia Application Framework

17Applications
Visual Programming for Multimedia
Visualization/Sonification of Data

self-describing input file format (netCDF)

netcdf xyzArr {

dimensions:
 index= 6;
variabes:

 double xpos (index);
 double ypos (index);
 double zpos (index);

data:
 xpos= 1.0, 3.0, -2.0, 4.0, -5.0, 4.0;
 ypos= 1.0, 3.0, 1.0,-3.2, 2.0, 4.0;

 zpos= 0.6, 3.1, -4.0,-3.2, 3.0, 1.0;
}

netcdf plane6x4 {
dimensions:
 x= 6;

 y= 4;
variables:
 long zpos (x,y);

data:

 zpos= 0,1,1,2,1,1,1,1,1,0,4,1,

 1,4,0,1,1,1,1,1,2,1,1,3;
}

MET++ Multimedia Application Framework

18Applications
Mapping
Visualization/Sonification of Data (contd.)

generic mappers

netcdf plane6x4 {

dimensions:

 x = 6;

 y = 4;
variables:

 float zpos (x,y);

data:

 zpos=

 0,1,1,2,

 1,1,1,1,
 1,0,4,1,

 1,4,0,1,

 1,1,1,1,
 2,1,1,3;

}

MET++ Multimedia Application Framework

19Applications
Mapping of data
Iterator Port

Mapping

MET++ Multimedia Application Framework

20Applications
Visual Programming for Multimedia
CAD

Parametric Construction
Constraining of interactive manipulation
Maintaining relationships between 3D objects

Redundancy-Free Animation Specification
Maintaining relationships between 3D objects
Animation of Keyplayers only

Executable Documents
Embeded Functionality in a Documentation
WWW
better than scripting
(a JAVA rival?)

MET++ Multimedia Application Framework

21Web-Sites
ET++ / MET++

ET++

ftp://ftp.ubilab.ubs.ch/pub/paper/Wei94.ps.Z
ftp://ftp.ubilab.ubs.ch/pub/paper/german-tutorial.tar.gz
ftp://ftp.ubilab.ubs.ch/pub/ET++/paper/

MET++/ET++

ftp://ftp.ifi.unizh.ch/pub/projects/met++/papers/

