
A Visual Programming Environment for Composing Interactive
Performance Systems

Bernhard Wagner
MultiMedia Laboratory

University of Zurich
Inst.f.Informatik, Winterthurerstr. 190

CH-8057 Zurich, Switzerland
wagner@ifi.unizh.ch, http://www.ifi.unizh.ch/staff/bwagner.html

Keywords: Performance, Visual Composition, Object-Oriented Framework, Real-time, Media-Patcher

Abstract

Based on a multimedia application framework a visual programming environment was built, that al-
lows non-programmers to compose objects offered in the core framework without having to learn a
programming language. Although having similarities with Opcode/IRCAM Max, our visual program-
ming environment has some significant differences: Its connections are bi-directional, other media than
MIDI, such as audio, 3D, 3D-animations are supported.

1 Introduction

Based on the portable (UNIX, WinNT) object-
oriented multimedia application framework
MET++ [1,2] a visual programming environment
was built, that allows non-programmers to com-
pose objects offered in the core framework with-
out having to learn a programming language
such as Java or C++ [6]. Although having simi-
larities with Opcode/IRCAM Max [3,4,5], our
visual programming environment has some sig-
nificant differences: Its connections are bi-
directional, other media than MIDI, such as
audio, 2D, 3D, 2D-, 3D-animations, and video are
supported. Due to the bi-directionality of the
connections and the support for various media,
the visual programming environment can act as a
Media Patcher. The Media Patcher can use static
or time-dependent geometric aspects of 3D-
objects (e.g. spatial coordinates, scaling, material,
texture information) to control musical parame-
ters. To allow for a more sophisticated mapping
than e.g. some coordinate linearly to note pitch,
intermediary analyses of media inputs can be
programmed visually. Due to its MIDI- and
TCP/IP-connectivity it can also be applied as a
real-time system. It has been used as a real-time
animation generator in a concert at the Conser-
vatory of Zurich.
The musicians improvise on MIDI- as well as
traditional instruments. The acoustic output is
converted by a pitch-to-midi converter. After
being filtered and analyzed, the MIDI data are
applied as coefficients to parametric functions
controlling several properties of an animated 3D-
mesh: x-, y-, z-coordinates and r-, g-, b-

components, and transparency, each controlled
by an individual function. The controlling func-
tions themselves can be exchanged at run-time.
Due to a generic interpolation mechanism the
exchanging of functions does not cause an
abrupt change in the animation. If the visual
programs become more complex the available
screen space is quickly used up. To overcome
this difficulty, a Tcl-Wrapper was built that allows
to formulate more complex functions in terms of
scripting.

2 The Object-Oriented Multimedia Application
Framework MET++

The Object-Oriented Multimedia Application
Framework MET++ has been presented at the
ICMC 95 [2]. It is well-suited for rapid applica-
tion development and prototyping purposes in
the area of multimedia and graphical user inter-
faces with high semantic feedback. Like other
frameworks, MET++ has reached a stadium
where it is mainly used in a black-box manner.
This means that it consists mainly of components
that can be instantiated and reused without the
need for subclassing. The term black-box is used
because the internals of the components don’t
have to be dealt with, only their interfaces.
MET++ is not just a library or collection of iso-
lated classes but a framework that pre-integrates
the components and predefines their style of in-
teraction. For example all time-dependent media
can be edited regardless of their specific type in
a special grouping editor provided by MET++.
This editor allows the redundancy-free, hierar-
chical grouping of time dependent media. It
therefore provides special grouping elements that

define the behaviour of the children it contains,
e.g. a Synchro element assures that all its chil-
dren start whenever it is the Synchro’s turn to
perform. A Sequence element groups its children
so that they are always played in sequence. If a
child is deleted from a Sequence all its successors
are shifted to the left to close the gap. These
grouping elements can themselves be grouped
within grouping elements and so define complex
temporal dependencies without ever having to
calculate any temporal positions manually.

Fig1: Time Composition View

3 Visual Programming

The shift towards black-box reuse of framework
components has been taken a step further in [6]
by introducing a third control environment or-
thogonal to direct manipulation and temporal
dependency. This environment provides a data-
flow mechanism in which the framework’s ob-
jects appear as IC-like components. The pins of
these ICs represent the attributes of the corre-
sponding object. For example a 3D-object has
pins for the parameters: spatial x-, y-, z-
coordinates, rotation, scaling, etc. but also pins
for the definition of the object’s color and trans-
parency. Additionally, the visual programming
environment provides special filter ICs that per-
form transformations of the values sent through
them.

The wrapping of framework components is real-
ized with an easy to use drag&drop user inter-
face. For example a 3D-object can be dragged
on top of the visual program and when released a
wrapper is instantiated.
The bi-directionality of the filters implies that
they perform a function in one direction and its
inverse in the opposite direction. For example,
there are special ”shifters” which add a constant
value b to the value x sent through them. When a
value y is sent at their output-pin, the constant
value b is subtracted and the result sent out the
input pin. Several other mathematical functions
(and their inverse) are available.
The concept of bi-direction is maintained also
when filter objects are chained together. So when
defining a complex filter function by cascading
simple filters, the inverse of this function is de-
fined ”for free” and applied when a value is
sent at the end of the chain.
If a function becomes too complex and cumber-
some, it is possible to implement it by a scripting
object. So far this object supports the Tcl script-
ing language [7], but it is planned to incorporate
other popular scripting languages like Perl [8],
JavaScript [9], Python [10], etc.
The advantage of getting the inverse function for
free is lost in case where the scripting object is
applied. The (scripted) inverse function has to be
provided explicitly.
For media controlled in the visual programming
environment the bi-directionality implies that
while the properties can be set by sending values
at the IC’s ports it is also possible to control the
object by other means (direct manipulation, tem-
poral control) and the object’s status is reported
at the ICs pins.
This allows for the redundancy-free definition of
e.g. animations by declaring relationships or
constraints between objects in the visual program
and only animating one keyplayer. The
keyplayer’s IC continuously reports the
keyplayer’s attributes and the visual program
maintains the relationships between the
keyplayer and its dependencies (see [6] for an
example).
The visual programming environment and the
temporal control can also be combined in other
ways: A special wrapper for the temporal control
element has been developed that allows to start,
stop, and position the time pointer at a specific
time by setting the corresponding ports in the
visual programming environment. Using this
technique it is possible to define ”local” time

dependent media that are started only when spe-
cific conditions are met, e.g. a sound or midi file
is only played when certain geometric conditions
are met. This allows to automatically create the
appropriate sounds for an animation of a colli-
sion. The animator of a scene does not have to
bother about defining the starting of the sound at
the right moment and always adjusting it when
the animation changes, but only once define the
appropriate condition.

4 ”ParaScape”: a specialised component

Though working with the visual programming
environment consists mostly of composing ob-
jects by interconnecting them interactively it
might be needed to develop specialized compo-
nents in C++ mostly for efficiency reasons. The
dichotomy between building components in a
”system programming language” and gluing
them together in a ”scripting language” (or vis-
ual programming environment in our case) is
discussed in [12].
The idea for the performance at the conservatory
of Zurich was to let musicians improvise and
generate a score out of the music in real-time.
This score would then influence the musicians
and so generate a cybernetic feedback.
By prototyping we tried several visual artifacts
that could be used for the score and quite
quickly found out that synthetic landscapes
(meshes) have the strongest suggestive effect.
Additionally, their multidimensionality accom-
modate to map the multidimensionality of the
room of musical parameters. Three requests that
the synthetic landscape should fulfill emerged:

• Shape and colors of the mesh should be
controllable for the mesh as a whole to re-
duce the number of degrees of freedom.

• The changes of the mesh should happen
smoothly

• The effect of the played music on the mesh
should not be too obvious to the musicians.
They should only feel that their playing has
an effect on the animation but not what ef-
fect.

The first request could be complied with by in-
troducing parametric functions.
The mesh can be understood as a rectangular set
of vertices. Each vertex has the parameters: spa-
tial x-, y-, z-coordinates, r-, g-, b-values defining
the color, and transparency α . For a mesh with
the dimensions U and V this results in 7 x U x V
degrees of freedom. To reduce this great number
and to get a better control over the mesh as a

whole seven parametric functions were intro-
duced, each controlling one aspect of all vertices
of the mesh. These parametric functions indicate
the value for the specific attribute depending on
the indices u and v of a vertex within the rectan-
gular set, e.g.

x = f(u,v) = v * cos(u) (1)

The parametric functions applied to the mesh are
specifically designed to be exchangeable at run-
time. Since the visual program only supports the
basic types like integer, float, and string (see [6])
the mesh contains a collection of about 30 func-
tions. These are chosen by index, e.g. the func-
tion in (1) has the index 23. To fulfill the re-
quirement of smooth changes of the mesh an
interpolation scheme is used:

(1-λ) * f(u, v) + λ ∗ g(u, v); λ in [0,1] (2)

Where f is the first function and g is the second
function. λ is incremented from 0 to 1 linearly.
Here is an example set of parametric functions
(the color functions are neglected):

x = v * cos(u); (3)
y = v * sin(u);
z = a * u;

and second set:

x = (b + a * cos(u)) * cos(v); (4)
y = (b + a * cos(u)) * sin(v);
z = a * sin(u);

Fig. 2 shows the resulting shapes created by ap-
plying the sets (3), a helix and (4), a torus. The
shape in between is one of the intermediate
shapes.

Fig 2: interpolating between helix and torus

In this example all three parametric functions for
x, y, and z have been exchanged at once. But in a
real-time performance they would be exchanged
individually and independently of each other.
Fig. 3 shows a sample setup of a visual program
containing a mesh and receiving a subset of its
parameters from two different MIDI-channels.
The output of the first MIDI-channel is trans-
formed by a script and by two simple filters.

Fig. 3: a sample setup containing a mesh-object

The mesh equipped with the parametric func-
tions and the ability to interpolate between them
is called ”ParaScape” (parametric landscape).

Outlook and Conclusion

A useful enhancement (possibly implemented by
the time this paper is published) is the control
not only over the color of a 3D-object but also
over the texture applied. This could include the
positioning of the texture relative to the 3D-
object and the dynamic exchange of texture bit-
maps, possibly including the interpolating be-
tween adjacent bitmaps.
The interpolation scheme (2) is implemented by
incrementing λ in steps of 0.1. It might be inter-
esting to allow the parameterization of this proc-
ess and thus providing different interpolation
modes.
We plan to experiment with the I-cube system
[11] that provides a collection of sensors
(pressure, acceleration, temperature, etc.). It
would be easily integrated in our system due to
its MIDI connectivity and could provide other
means to control the ParaScape than MIDI in-
struments.

We believe that the visual programming envi-
ronment can give artists a more intuitive interface
for specification of real-time performances. It is
also a useful prototyping environment before
coding a component directly in C++.

References

[1] Philipp Ackermann: Developing Object-Or-
iented Multimedia Software; dpunkt-Verlag
Heidelberg 1996.

[2] Philipp Ackermann: Design and Imple-
mentation of an Object-Oriented Media
Composition Framework; Proceedings of the
ICMC 1994.

[3] David Zicarelli, Miller Puckette: Getting
Started with MAX, Opcode Systems Inc.,
Palo Alto, California, 1995.

[4] David Zicarelli, Miller Puckette: MAX Refer-
ence, Opcode Systems Inc., Palo Alto, Cali-
fornia, 1995.

[5] MAX Product Announcement CMJ Vol.
15(1): pp. 81-82;1991.

[6] Bernhard Wagner et al.: Black-Box Reuse
Within Frameworks Based on Visual Pro-
gramming; 1st Component User’s Confer-
ence, Munich 1996. Also available online
(see my homepage)

[7] John K. Ousterhout: Tcl and the Tk Toolkit,
Addison-Wesley, 1994.

[8] Larry Wall et al.: Programming Perl, 2nd
edition, O’ Reilly & Associates, 1996.

[9] John R. Vacca: JavaScript Development, AP
Professional, 1997.

[10] Mark Lutz: Programming Python, O’ Reilly
& Associates, Inc. 1996.

[11] Alex Mulder: The I-Cube System: Moving
Towards Sensor Technology for Artists,
ISEA 1995 proceedings, Montreal. Also
available online:
http://fas.sfu.ca/people/ResearchStaff/amulde
r/personal/infusion/ISEA95.html

[12] John K. Ousterhout: Scripting: Higher Level
Programming for the 21st Century, White
Paper from 03/28/97 available at:
http://www.sunlabs.com/people/john.ousterho
ut/scripting.html

