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ET++ is a portable and homogenous object-oriented class library integrating user
interface building blocks, basic data structures, and high level application framework
components. ET++ eases the building of highly interactive applications with consistent
user interfaces following the direct manipulation principle. The ET++ class library is
implemented in C++ and can be used on several operating systems and window system
platforms. Since its initial conception the class library has been continuously
redesigned and improved. It started with an architecture which was close to MacApp.
During several iterations a new and unique architecture evolved. A byproduct of the
ET++ project is a set of tools, which were designed to support the exploration of ET++
applications at run-time.

1 From Toolbox to Application Framework
Making computers easier to use is one of the reasons for the interest in interactive and graphical
user interfaces that present information as pictures instead of text and numbers. They are easy to
learn and fun to use. Constructing such interfaces, on the other hand, often requires considerable
effort because they must not only provide the functionality of conventional programs, but also have
to show data as well as manipulation concepts in a pictorial way. Handling user commands from
input devices such as a mouse or a keyboard in order to build an event driven application
complicates the programmer’s task even more. It is not uncommon that up to 50-80% of the code
are devoted to user interface aspects.

Much of the user-friendliness of applications comes not only from an iconic user interface but
also from a uniform user interface across applications. This leads to a significant amount of
development redundancy because most of the code required by the user interface has to be
reengineered for every new application.

A first solution to reduce this complexity has been the invention of so called toolboxes, rich
collections of library functions that implement the low-level components of the user interface like
windows, menus, and scrollbars. The toolbox may be part of the system software for a particular
computer or of specific window system software. The biggest problem of most conventional
toolboxes is their lack of flexibility and extensibility paired with considerable overall complexity. It
is not easily possible to upgrade their functionality or to add new components without modifying or
duplicating source code.

Modern toolbox implementations like the Motif toolkit for the X window system [Ber91] use
object-oriented programming techniques to improve flexibility and extensibility by dynamic
binding and inheritance.

Much of a typical application’s main program built on top of a toolbox is merely program “glue”
that manages the calling of toolbox subroutines or, in object-oriented toolboxes, implementing the
callbacks invoked by the toolkit. The major drawback of the toolbox approach is that it does not
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define an overall structure for an application. In other words it provides architectural guidance for
how to structure the application. In addition toolboxes can only ensure user interface consistency at
the level of individual user interface widgets and not at the application level. A partial solution is to
provide developers with a program skeleton which can be copied and modified to fit the
application’s requirements. But skeletons are not the optimal solution because they duplicate code
which should go into a library and because they make the application code more complex and less
manageable.

A promising solution is that of an (object-oriented) framework in general and application
frameworks in particular. An application framework defines much of an application’s standard user
interface, behavior, and operating environment so that the programmer can concentrate on
implementing the application specific parts.

Prominent examples for application frameworks are Smalltalk-80 for the Smalltalk user
interface, MacApp [Sch86, Ros86] for the Macintosh user interface, and Unidraw an application
framework for structured graphics editors [Vli89].

An application framework allows reusing the abstract design of an entire application, modeling
each major component with an abstract class [Joh88]. In a graphical application, for example, these
components are documents, windows, commands, and the application itself.

While the framework approach is useful for the development of any software, it is especially
attractive if a standard user interface should be encouraged, for it is possible to completely define
the components that implement this standard and to provide these reusable components as building
blocks to other developers. This is an advantage over the toolbox approach where user interface
“look-and-feel” guidelines are by prescription rather than implementation.

This article presents the design, architecture, and construction of ET++, an object-oriented
application framework implemented in C++ for a UNIX environment and various standard window
systems.

2 An Example of an ET++ Application

Figure 1. ET++Draw an Example of an ET++ Application.

Figure 1 shows a screen dump of ET++Draw to give an idea of what kind of applications ET++
supports. ET++Draw is a classical drawing program. The following list highlights some tasks ET++
takes care of without any special effort by the programmer when building applications such as
ET++Draw:
– editing of several drawings in several windows,
– scrolling of the window contents (including auto scrolling and real-time scrolling),
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– displaying disconnected portions of the drawing by using several panes,
– file and dialog management for loading and storing a document,
– incremental flicker-free screen update based on double buffering, and
– device independent hard copy output of the drawing, for example in PostScript. The printing of

the drawing can always be previewed on the screen.
– the application runs on all window systems supported by ET++.
– the appearance or the look of user interface widgets like scrollbars and buttons can be switched

dynamically at run-time. Currently a Motif and a Macintosh inspired ET++ look are supported.

Other parts of the implementation that are not handled automatically but are supported by
components of ET++ include:
– data structures underlying the draw application (lists, sets, dictionaries, etc.),
– a powerful text building block which supports editing of rich text, that is, text with different

character and paragraph attributes,
– input/output of the data structures used in the application (even data structures containing

cycles, because ET++Draw supports arbitrary visual connections between shapes,
– undoable commands (multi level),
– a notification mechanism for maintaining dependencies among objects. ET++Draw uses this

mechanism to implement the visual connections between shapes. A connection depends on the
positions of the shapes it connects,

– support for transferring a selection of shapes to the clipboard or to duplicate any shapes, a
feature which substantially simplifies the implementation of undoable commands),

– import and export of graphics, images, and text in standard exchange formats (e.g. TIFF, PICT,
PBM, RTF) is facilitated by a converter framework,

– automatic layout of a group of graphical objects, for example in dialog boxes.

3 Architectural Overview
The backbone of the ET++ architecture is a layered class hierarchy with about 300 classes
(Figure 2).

ET++ is organized as a “mostly” single rooted class library, that is, most of the classes descend
from a common base class Object. While this organization is not very popular in C++ it has
proven to be well suited for our needs. It enabled the implementation of some valuable
infrastructure inherited by all descendants of Object. For example, run-time access to information
about the classes of an application (meta information) could be smoothly integrated into the class
library by defining the corresponding infrastructure at the root class.
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Figure 2. ET++ Architecture.

The Toolkit layer contains the most important low level building blocks of the ET++ class
hierarchy: the class Object, the root of the overall class hierarchy, implements the common
behaviour for all ET++ classes. Data Structures are general purpose classes, like arrays, lists, sets
etc. which are used heavily in the implementation of ET++ itself. The View System contains a small
number of graphical building blocks which implement the common behavior of all graphical classes
and defines a framework to easily build new components from existing ones. The User Interface
Toolkit contain all the graphical and interactive components found in almost every user interface
toolbox, such as menus, dialogs, or scrollbars.

The Framework layer contains a small number of high level frameworks. The Application
Framework classes are high level abstract classes that factor out the common control structure of
applications running in a graphic environment. They define the abstract model of a typical ET++
application and together form a generic ET++ application. The other frameworks provide high level
and extensible building blocks for rich text, tables and spreadsheets, and trees and graphs.

On top of this core system are more domain specific frameworks. These are part of the ET++
distribution but not topic of this paper.

The ET++ Exploration Environment is a set of exploration tools which are automatically
included in every application. The tools allow inspecting the running application to help the
developer understand the program.

The Environment Abstraction Layer provides its own hierarchy of abstract classes for operating
system services, inter application communication, window management, input handling, and
drawing on various devices. Subclasses exist for implementing the system interface layer’s
functionality for various native window and operating systems.
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4 The Toolkit

4.1 Built-in Classes

ET++ is not strictly single rooted and not all classes descend from Object. Classes which are used
like built-in types do not descend from Objects. Examples are the geometry classes Point and
Rectangle or the class String. These classes are not used in a polymorphic way and are
treated as built-in types.

4.2 The Class Object

Most classes of ET++ are derived from the class Object. Object defines protocols (abstract
methods) for comparing objects, for notification between objects, and for object input/output to
name just the most important ones.

The object input/output facility of ET++ supports the transfer of arbitrarily complex polymorphic
data structures from memory to an ET++ stream and vice versa. This functionality is based on the
abstract methods PrintOn and ReadFrom, which are overridden in subclasses to stream an
object’s instance variables. The power of the ET++ object input/output facility lies in the fact that
the programmer does not have to distinguish between transmitting a pointer to an object and an
ordinary scalar typed variable. Moreover, circular structures are linearized and multiple references
to the same object are restored properly. Storing pointers is implemented by a map per stream
which assigns a unique identifier to each transmitted instance. This identifier can be transferred to
other address spaces or to permanent storage.2

Object input/output needs some information about the type of an object at run time, because not
only the state of an object but also its corresponding class have to be transmitted. ET++ run-time
support would even provide enough information about an object’s instance variables to implement
the PrintOn and ReadFrom methods generically in the class Object. But we preferred the
approach of a programmer selectively deciding which instance variables should be written to disk.
Instance variables caching some state of an object that can easily be reconstructed in the
ReadFrom method do not even have to be transferred to disk. Another example is a hash table that
compacts itself, i.e. ignores empty slots, when it is saved.

The case of encountering an unknown class while reading back an object structure leads to the
discussion of dynamic loading and linking. To handle this case gracefully ET++ includes a
mechanism to load a new class and link it to a running application. The implementation of dynamic
linking in ET++ exploits the virtual function mechanism of C++ to provide type-safe incremental
linking as described in [Str87]. This dynamic linking support can be further used to extend a
running system. In the ET++Draw application, e.g., a new kind of shape could be implemented and
incrementally linked while the application is running.

The object input/output facility together with the flexible stream classes of ET++ allowed the
implementation of a generic DeepClone method for objects in the class Object:3 The stream
classes support object transfer not only to disk files but also to a buffer in memory. To do so, the
PrintOn method is simply invoked to write an object to a dynamically growing buffer in memory;
it is followed by ReadFrom, which creates the duplicate object by reading the buffer. Experience
with ET++ has shown that the DeepClone method is hardly ever overridden in subclasses.

The object input/output facility is also used as the standard format to transfer arbitrary data
structures to other ET++ applications via the clipboard. The transparent integration of dynamic link-
ing into the object input/output mechanism allows the copying of instances of classes from the clip-
board that are not known in the running application.

2 It is interesting to see that a pointer does not identify an object uniquely because an object can be deleted after a transfer and
another one allocated at the same address. Consequently, some precautions have to be taken to handle this case properly,
otherwise the same identifier would be assigned for different objects.

3 A deep clone of an object consists of its instance variables plus a deep clone of all objects referenced by it.
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Another general mechanism provided by Object is change notification. The basic idea is to
give some support to the synchronization of objects, for example, a model with its associated view
in an MVC-design. Providing this mechanism at the root class of ET++ allows the synchronization
of completely independent objects. Notification is modeled after Smalltalk-80’s support for
dependencies [Gol83]. AddObserver is the method for registering an object as dependent on
another object. Modifications of the state of an object are announced with a Changed method,
triggering a call of the DoObserve method for all dependent objects. To react to a change
notification, this DoObserve method has to be overridden. The default implementation of
notification in Object uses a space efficient global dictionary to store the Object’s observers.
Subclasses are free to provide implementations with better performance.

Notification has proved to be a very useful mechanism and is not only used in MVC-designs.
ET++Draw, for example, uses notification to maintain visible connections between arbitrary
graphical elements.

4.3 Portable Run-Time Support for C++

Even with the upcoming run-time type information standard for C++ (RTTI) the run-time system
does not provide any information about the class structure or the instance variables of an object.
Consequently, an additional mechanism has to be introduced to gather this information in order to
support an IsKindOf method and for the object input/output facility.

ET++ uses the approach of associating with each class a special object describing its structure.
These descriptors are instances of the class Class which is itself a subclass of Object. In analogy
to Smalltalk-80, they are called metaclasses (strictly speaking this is a misnomer because these
descriptors are not classes but only instances).

Metaclasses store the following information about a class:
– the name of the class,
– the size of an instance in bytes,
– its superclass,
– the names and types of its instance variables, and
– a source code reference to the definition and implementation part of the class.

The types of the instance variables and the source code reference were introduced in order to give
support for the ET++ exploration environment.

Because the C++ run-time system gives no access to type and structure information, it cannot be
circumvented that the programmer has to provide some of this information manually. Nevertheless
the principle “do not bother the programmer” was always a consideration in designing the metaclass
mechanism. For this reason, preprocessor macros extract as much as possible automatically from
the source code. See [Gam89] for a more detailed description of this approach.

4.4 Container Classes

The basic building blocks of ET++ include abstract data types often referred to as container classes.
Included are OrdCollection (dynamically growing arrays), ObjList (linked lists), Set (hash
tables), and Dictionary to name a few. They are more or less modeled after the Smalltalk
collection classes.
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Figure 3. The Container Classes.

The container classes all deal with any instance derived from the class Object which excludes
more specific type checking at compile time. Recent implementations of C++ support
parameterized types (templates) as an alternative approach allowing more type checking at compile
time. But because the support for templates and maturity varies between different compilers the
authors are still reluctant to use templates.

Robust Iterators

Container classes require a mechanism often referred to as iterators [Lis86] to inspect their
elements one by one. One way to implement iterators is to store the state of the traversal in the
container class itself. The disadvantage of this approach is that only one iterator can be active for an
instance of a container class at any time. For this reason ET++ implements a companion class for
each container class storing the traversal’s state in instances of it. This approach allows several
active iterators at the same time.

A problem that has to be considered is what happens when the underlying collection of objects is
modified during a traversal. CLU[Lis86], a language with built-in support for iterators, requires that
while an iterator is active the collection should not be modified. It is up to the implementor of an
iterator to handle this case properly. This restriction cannot be enforced when working with an
application framework because a lot of the control-flow resides in the framework. A client can
hardly decide whether at a certain point an iterator is active and whether it is secure to remove an
object from a collection. ET++ container classes take care of this problem by introducing robust
iterators. The basic idea is that deletion of an object is delayed until no more iterators are active.
Due to this kind of iterator some hidden bugs and memory leaks have been eliminated from ET++.
Their implementation profited from the fact that a lot of the code has been factored out and realized
in the common superclass of all container classes (Container). Kofler [Kof89] is a detailed
description of the design and implementation of robust container classes for ET++.

4.5 The View System

VObject (visual object) is the most general graphical class in ET++. It defines protocol for
drawing graphical objects on the screen, for input event handling and distribution, and for managing
their size and position.

A design goal for VObjects was to keep them small and lightweight. This means that
VObjects have very little memory or performance overhead even when using thousands of them
(for example as leafs and nodes in a large tree view). Consequently, VObjects have no built-in
coordinate transformation and establish no clipping boundary. Our experience shows that this is an
asset rather than a burden because most of the simple graphical objects (e.g. the items in a menu or
buttons) do not need a clipping boundary anyway and gain no benefit from having their own
coordinate system. A more detailed discussion of these design decisions is [Wei92].

The relatively large interface of VObject mirrors the fact that it should be possible to design all
high-level algorithms dealing with graphical objects in terms of the abstract protocol of VObject
alone. This approach automatically results in the algorithms working on any kind of graphical
object. VObject, as an example, in addition to its origin and extent, defines the abstract protocol to
maintain a baseline, which is essential for the alignment of VObjects representing text.
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Most of the interface of VObject are simple utilities which are implemented in terms of a few
dynamically bound methods, a so called bottleneck interface. In order to create a new subclass, it is
only necessary to override a small number of methods. VObject provides quite a number of
methods to change its origin and extent or the x or y component thereof (SetExtent ,
SetOrigin, SetContentRect, SetWidth, SetHeight, Align, and Move). It would be a
pain had all these methods to be overridden in every subclass. But with the bottleneck interface it is
in fact only necessary to override SetOrigin and SetExtent.

Besides its rendering on the screen every graphical object must include a mechanism to react to
input events. VObject defines methods for various input events like key and mouse button presses
which are called when the corresponding input event occurs. In order to react to a specific event, the
corresponding method must be overridden. The default implementation of these methods is to
propagate the event to another VObject referenced by an instance variable.

An interesting mechanism of the graphical foundation classes is their ability to combine several
VObjects (e.g. a Collection) into a single, composite object which can be treated as one
VObject. The abstract class CompVObject applies methods executed on itself to all of its
components and forwards input events to one of them. The layout management of composite
VObjects is the responsibility of a subclass. With the introduction of the CompVObject,
VObjects are most easily arranged in a tree-like fashion which allows a reasonable default
implementation of all event handling methods: the event is dispatched downwards and the calls to
handle an event are by default propagated up to its container.

The class Clipper is a subclass of VObject. It defines an independent coordinate system and
clips the graphical output of a VObject to a rectangular area. It is kind of a “hole” through which
another VObject or a part of it can be seen and scrolled. The implementation of scrolling is based
on this class. Because a Clipper is a subclass of a VObject, a Clipper can again be installed
within a Clipper. This results in the concept of hierarchies of independently scrollable VOb-
jects nested to arbitrary depth (Figure 4). Applications for this will be given later in the general
discussion of the graphic building blocks.

VObject

Text

Te

Clipper

VObject

Clipper

Figure 4. A Hierarchy of Nested Clippers.

It is sometimes hard to determine when it is necessary to redraw an object in order to update its
image on the screen in response to changes in its internal state. This is due to the fact that visual
objects may be obscured partly or completely by other objects which have to be redrawn as well.
The ET++ view system makes use of an indirect drawing scheme (invalidation) which makes it
completely unnecessary to call the Draw method of a VObject directly because all control flow is
factored out into the framework. An ET++ application simply announces which VObjects (or part
thereof) must be redrawn by calling a method which adds the region occupied by the VObject to a
single update region per window. Whenever ET++ is idle, it requests the application to redraw the
update region by calling the Draw method of the top most VObject (e.g. a view installed in a
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window). Because invalidation is cheaper than redrawing, this delayed update mechanism optimizes
the redrawing on the screen without further help from the application.

Since redrawing is completely under the control of the view system framework, it is possible to
integrate further optimizations that are transparent to the application. Double buffering, for
example, provides for flicker free screen update by collecting the output of a sequence of drawing
requests in a memory (shadow) buffer, which is copied to the screen in a single operation. This
substantially simplifies the implementation of the text handling classes because it is no longer
necessary to minimize the screen flicker by sophisticated incremental update strategies.

This indirect synchronous drawing scheme works very well with most classical application types
but has its limitations when dealing with animation or digital motion video because it is not feasible
to invalidate and redraw regions of the screen at real-time video rates. However[Sch93] shows how
support for motion video can be integrated into ET++ with very little modification.

User Interface Elements

Graphic building blocks, like menus, buttons, scrollbars, and editable texts, are the “Lego bricks” of
an interactive user interface and are available in almost any user interface toolbox. But usually there
is only a fixed set of them and no simple way to modify existing ones or to construct new ones from
predefined lower level components.

Inheritance is one possibility to modify existing components or add behavior to them. An
example is adding a borderline by overriding the Draw method of a VObject. But if all predefined
items should have a borderline, it becomes necessary to override all corresponding draw methods
which results in duplicated code. As another example, a button may consist of an image or text, a
single or double borderline, and a special behavior to react to mouse clicks. A scrollbar typically
consists of an up and a down button together with an analog slider which itself may be a filled
rectangle, an image, or even a number reflecting its current value. All these parts may be useful for
other kinds of dialogs or even in a completely different context.

At first sight, multiple inheritance or mixins seemed to be a possible way to combine various
kinds of basic classes to form the complex items mentioned above. But on second thought it
became obvious that multiple inheritance was not the ultimate solution. As an example, multiple
inheritance does not allow the combination of a TextItem and two BorderItems in order to get
a Double–BorderedTextItem.

Another observation was that dialog items most often come in groups. The Macintosh printing
dialog, to take just one complex dialog box, consists of about 30 different items which are placed
nicely in a dialog window. On the Macintosh the placement of dialog items can be handled
interactively with the resource editor. But if the size of a single item changes, the overall layout of
the dialog has to be redone. Moreover, the precise horizontal and vertical alignment of text items is
a tedious task if done by hand. This led to the integration of some automatic layout management in
ET++ which is based on a hierarchical and high level layout description rather than on the explicit
placement of items.

An almost perfect approach for two-dimensional hierarchical composition of visual elements is
the UNIX text processing tool eqn, a troff-preprocessor for typesetting mathematics [Ker75]. Eqn
translates a simple description of a formula into a sequence of typesetting commands. The basic
items of eqn are characters or strings which can be pieced together with a number of layout
operators to form more complex items. Repeated grouping of items finally leads to a tree represen-
tation of the formula.

As a result a design idea for all kinds of user interface building blocks is to provide a small
number of basic items which can be pieced together with a number of layout operators to form more
complex items. This approach has been used to implement the layout management in ET++. All
graphical elements visible on the screen are bound into a tree of VObjects, whose root is installed
in a Window.

The simplest items, such as the classes TextItem, LineItem, and ImageItem, are direct
subclasses of the VObject. In contrast to more complex components, they do not separate a model
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and a view because the underlying data structure and its rendering is very simple and interaction
behavior (e.g. editing operations) is typically not needed. Figure 5 shows some of the user interface
components of the class hierarchy.

VObject
TextItem
ImageItem
PictureItem
Clipper

Window
Zoomer

CompVObject
Slider
Matte
BorderItem
Box

Expander
Form
OneOfGroup
ManyOfGroup

Button
ActionButton
RadioButton
ToggleButton

Figure 5. User Interface Components.

The layout operators as subclasses of CompVObject are responsible for controlling both the
communication among their components and the relationships among the locations of these
components, i.e. the layout management.

A BorderItem, for example, draws a borderline around its contents and displays an optional
title aligned above its contents in a number of ways. The contents as well as the title are in turn
instances of VObject.
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new VBox(
new Form(

new TextItem("Find:"), new TextField,
new TextItem("Change:"), new TextField,

0),
new HBox(

new BorderItem("Direction",
new OneOfBox(eLeft,

new HBox(eBase,
new RadioButton,
new TextItem("Forward"),

0),
new HBox(eBase,

new RadioButton,
new TextItem("Backward"),

0),
0)

),
new BorderItem("Options",

new ManyOfBox(eLeft,
new HBox(eBase,

new ToggleButton,
new TextItem("Ignore Case"),

// ...
0),
new LineItem,
new HBox(

new ActionButton("Find Next"),
new ActionButton("Change, Then Find"),

// ...
0)

0);

Figure 6. Part of a Dialog Box and its Defining Statement.

A Box implements a tabular layout of its component VObjects. The commonly used horizontal
or vertical lists of items are special cases of a general layout: Each Box item can be aligned
horizontally as well as vertically in a number of ways (left, right, center, top, bottom, base). The
Box implements a very powerful mechanism which fits the needs of most complex dialog layouts
without having to position items explicitly (Figure 6).

The OneOfGroup (ManyOfGroup) is a subclass of Box that implements the one-of (many-of)
behavior of several on/off buttons.

Any single item in the statement of Figure 6 could be replaced by an arbitrarily complex
composite item. Because this generality is not always needed, convenience constructors exist for
often-used dialog patterns. This allows a much simpler description (Figure 7).
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new VBox(
new Form(

"Find:", new TextField,
"Change:", new TextField,

0),
new HBox(eCenter,

new BorderItem("Direction",
new OneOfBox("Forward", "Backward", 0)),

new BorderItem("Options",
new ManyOfBox("Ignore Case", "Match Whole Word", 0)),

// ...
0);

Figure 7. Building the Dialog using Convenience Constructors.

5 Application Framework
The most important principle embodied in an application framework is to express an abstract design
for a particular kind of application with a collection of abstract classes. These classes define the
application’s natural components and how they interact. This interaction is the main difference
between an application framework and a collection of abstract but not strongly related classes. The
former allows the factoring of much of the control flow into the class library, while the latter
requires that the developer know exactly when to call which method.

5.1 Managing Presentations

The ET++ Application Framework centers around a hierarchy of so called presentations. A
presentation is a collection of (mostly) visual components, like menubars and menus, dialogs, views
and windows that make up one aspect of an application. Every presentation is managed by an
instance of class Manager or a subclass thereof.

An application consists of a hierarchy of Managers: the top-level Manager is an instance of
the specialized subclass Application, which controls the application as a whole and manages
any number of sub-Managers.

Application

Document

MenuDialog

Document

MenuDialog

SubManagerSubManager

Dialog Menu

Figure 8. A Typical Manager Instance Hierarchy.

Figure 8 shows an example (snapshot) of the dynamic relationship between instances of
Managers and their subclasses. The small circles denote methods (factory methods) clients have to
override in order to create specific sub-Managers. After their creation ET++ takes care of them.

The most important subclass of Manager is Document. In addition to its responsibilities as a
Manager a Document encapsulates the data structure (the model) of an application and
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collaborates with another abstraction (Data, see below) in order to load and later store and close
the model.

The implementation of loading and closing documents is a good example of factoring out the
common control flow: consider, for example, an end user who intends to open a new file without
saving the old modified file to disk. The abstract class Document manages all necessary dialogs to
ask the user if and where to save the old file and what file to open next.

If a presentation is not document based but, for example, a data base front-end or a simple
control panel or dialog, its sufficient to just create a subclass of Manager. ET++ dialogs and even
menus are subclasses of Manager.

A Dialog implements a standard behavior for modal or modeless dialog boxes. A single
method must be overridden to create the dialog’s VObject tree, another to set up the initial state,
and a last method to react to all dialog interactions.

Manager // manages a presentation
Application // manages an application as a whole
Document // manages model based presentation
Dialog // manages dialog box presentation
Menu // a presentation of a one-of-many selection

Figure 9. Manager Classes.

Managers are a good example of a simple yet powerful abstraction that is applied in different
areas and greatly reduces the number of concepts a developer has to learn.

5.2 Data and Converter Framework

The abstract class Data defines an interface for transparently accessing and converting external or
remote data, like files, components embedded in documents or data bases, or the clipboard. Clients
typically use subclasses of Data to extract an object that will be used as a model. The Data
abstraction tries to hide details like source and original format of the external data by always
providing an object that is convenient for the client to work with. A text editor for example will ask
a Data object to convert the data source to a subclass of Text, a graphics editor will try to get a
Picture. After the client is done with the object, the object can be converted back to its original
form and saved in its original place.

The most important subclass of Data is FileData, a data source connected to a file stream of
the underlying file system. Another subclass is ObjectData which wraps a given Object. It is
used for implementing the ET++ clipboard and drag-and-drop mechanism.

The implementation of the Data uses the converter framework of ET++. This framework first
uses TypeMatchers to determine the type of an external data source. It then tries to find a
Converter object from the set of available Converters which can convert the external data to a
requested class type. If more than one conversion sequence is possible a selection dialog is
presented to the user.

The converter framework can be easily extended by clients with new TypeMatchers and
Converters. Because existing and new applications work on Data only, they automatically
profit from any new converters by being able to exchange and import data formats previously
unknown to them. There are converters provided for Rich Text (RTF), Macintosh PICT2, TIFF,
Encapsulated PostScript (EPSF), X11 Bitmap Format (XPM), and Portable Bitmap Format (PBM).

5.3 Viewing

The main task of graphical applications is rendering the document’s data structures on the screen.
VObjects or subclasses thereof are the basic components for implementing the entities of the
model as graphical elements.
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In addition, interactive applications have the notion of a current selection on which some
operation triggered by the user will be performed. The class View, another subclass of VObject,
represents an abstract and possibly arbitrarily large drawing surface. Its main purpose is to factor
out all control flow necessary to manage rendering and printing as well as maintaining a current
selection. A Document can have any number of Views, all showing the same model in various
representations. This closely corresponds to the MVC model of Smalltalk.

In addition a View adds the ability to be visible in multiple Clippers, that is different portions
of the same View can be shown in different places on the screen. This powerful concept is used in
ET++ for the implementation of the classes Splitter and PageView. A Splitter shows
disconnected portions of an underlying View in several panes. A PageView breaks an underlying
continuous View into separate pages and displays each of them with border and optional header
and footer as a matrix of pages. Because this functionality is totally transparent to the original
View, Splitter and PageView can be used with any existing and future View subclass.

5.4 Undoable Commands

An important issue of user friendly applications are undoable commands because they allow novice
users to explore applications without the risk of losing data. Implementing undoable commands,
unfortunately, is a pain unless there is some support from a framework. One approach for their
implementation is to collect enough state before executing the command in order to be able to
reverse its effect when the user selects “undo.” For a single level “undo” this state can be discarded
whenever the next command is performed. Clearly, it is difficult to build a totally automatic but
efficient framework for undoable commands without further support by the programmer. But it is
possible to design a framework that factors out the flow of control, leaving only the decisions
regarding what state to save and how to “do” and “undo” a command to the programmer.

The abstract class Command defines the protocol while subclasses of the abstract class
CommandProcessor implement the control flow for executing and undoing a command. Simple
non-model based Manager like Dialogs have an SingleCommandProcessor which allows a
single level undo. Documents typically have an UnboundedCommandProcessor which keeps
all command objects since the last load or save operation.

To implement an undoable command, a subclass of Command has to be derived. Such a subclass
defines the necessary state variables and methods for doing and undoing the command. ET++
applications never perform commands directly but simply instantiate command objects and pass
them to ET++. The framework calls their methods and frees command objects when they are no
longer undoable.

Command classes, which were first introduced in EZWin [Lie85], are a very elegant example of
the reuse of an abstract design and not only ease the implementation effort substantially but also
help to modularize complex applications into small and more manageable pieces.

6 High Level Building Blocks
In addition to the basic user interface elements described above ET++ provides higher level
building blocks for textual, tabular and hierarchical data.

6.1 Rich Text Building Block

A text building block has to support a spectrum of different applications. At the lower end are text
entry fields in dialog boxes. A drawing editor uses editable text for annotations. A program editor
needs efficient text for editing and displaying pretty-printed source code. Finally at the higher end
are on-line documents which require support for multiple character and paragraph styles with
embedded graphics and hypertext links.

To cover this entire spectrum the text building is not implemented as a monolithic object but as a
separate framework. The key abstractions of this framework and their responsibilities are:
– Text maintains the text data structure and sends out a notification whenever the text changes.
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– TextView renders the text, handles input, and change notifications from its Text object.
Maintains the text composition, that is how the text is broken into lines. The responsibility for
finding the breaks is delegated to a TextFormatter object. The rendering of a single text
line is delegated to a TextPainter object.

– TextFormatter finds the line breaks in a paragraph.
– TextPainter renders a single line of text and is responsible for handling typographic effects

like justification and ligatures.

Each abstraction is implemented by a family of classes. To create an editable text object the
client selects a TextView class and combines it with a Text, a TextFormatter and a
TextPainter object. This approach enables the creation of editable text objects with different
functionality by combining different text objects in different ways. TextView acts as the controller
of an editable text object and mediates between the other objects.

Figure 10 illustrates the hierarchy of TextView classes. StaticTextView renders text while
TextView also handles input an implements text editing operations. CodeTextView further adds
auto indenting, find-matching-bracket features, and pretty printing of program text to the functions
provided by a TextView. A ShellTextView is connected to a shell and supports to enter
commands and to log their outputs.

VObject
View

StaticTextView
TextView

CodeTextView
ShellTextView

Figure 10. The TextView Hierarchy.

Following the goal of uniform mechanisms wherever possible, the implementation of the class
TextView uses the same mechanism for invalidating a region of a view in order to update the
screen as described in a section 4.5. Due to double buffering the screen is updated flicker-free, even
for text displayed against arbitrary backgrounds.

The separation of the text storage from the TextView  and the use of notification to
communicate changes enables to view the same Text object in multiple TextViews.

Classes for managing the data structures of a text are descendants of an abstract class Text
(Figure 11.)

Object
Text

CheapText
GapText

StyledText
VObjectText

Figure 11. The Text Hierarchy.

Text defines a bottleneck interface for its subclass. Editing operations like Cut, Copy, Paste are
implemented in terms of a ReplaceRange primitive. Subclasses only have to implement this
method. Efficient access of the text contents is achieved by iterators which retrieve a sub-sequence
of text character by character, word by word, or paragraph by paragraph.

CheapText is the simplest implementation of a text data structure and is primarily used for
testing purposes. The underlying data structure is a dynamic character array. GapText is used for
larger texts and implements the text abstraction as a character array with a gap as known from the
text package of the Andrew system [Han87]. The class StyledText, supports the assignment of
different character and paragraph attributes to a text range.
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Another subclass of Text is VObjectText. VObjectText enables to embed arbitrary
objects into a text which behave as ordinary characters. The protocol for such character like objects
is defined by the class VisualMark. It defines the interface for measuring and rendering character
like objects. An example subclass is VObjectMark which implements the VisualMark interface
for VObjects. It enables the embedding of arbitrary VObjects into text. Figure 12 shows the
ET++Write application. It uses VisualMarks to embed pictures and the running clock.

A TextFormatter is responsible for finding the line breaks in a text. The line breaking
functionality is factored into its own object to enable the use of different line breaking strategies.
ET++ provides two implementations, SimpleTextFormatter and FoldingText-
Formatter. SimpleTextFormatter breaks the text only at explicit line breaks whereas
FoldingTextFormatter breaks the text into lines of a given width.

Figure 12. ET++Write.

VisualMarks turned out to be a powerful extension mechanism for text, they are not limited to
embedding pictures. In ET++Write VisualMark subclasses were used to implement:
- markers, zero width characters with a symbolic name, they are used to define sticky targets for

hypertext links,
- hypertext links, the link target is referenced as document name, marker name pair,
- action links, display a little icon and store a shell script which is executed when the user clicks

on the icon,
- annotations, shown as an icon and when clicked pop-up a dialog for entering an annotation,
- counters for headings and figures, this counters look like ordinary characters but they are

objects with the additional behavior to update a counter.
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Another example is the FileBrowser application which uses VisualMarks to enable the
inclusion of pictures as comments in source code.

The above architecture has proven to cover a wide range of application needs. For example,
ET++Write uses a custom TextView  subclass with a VObjectTex t and a Folding-
Formatter. Simpler text-entry fields use the standard TextView class with a GapText and a
SimpleTextFormatter. More specialized text entry fields which need to support data
validation are covered by a family of TextField classes. Multiple TextField classes share the
same TextView and thereby reduce the memory requirements.

In addition to the core text classes described above the text building block includes several
Command classes for manipulating text in an undoable way.

The text building block leverages the converter architecture for supporting import and export of
text in different formats, like the RTF (rich text format) interchange format.

6.2 Grid Views for Tabular Data

Another important class derived from View is the GridView. A GridView is a flexible
framework for displaying cells in a matrix and forwarding input to them. It also takes care of
selecting and deselecting single cells as well as contiguous and non-contiguous areas of cells. The
GridView is a basic building block for many user interface objects which have to present a
collection of selectable cells.

A GridView makes no assumptions about the underlying data structure of a cell but clients are
required to override at least a DrawCell(column, row, rectangle) method to draw a cell’s
content. The fact that a cell is not an object appears to be not very object oriented but our
experience has shown that in many cases its much easier to implement a single method by accessing
an existing data structure than to convert the data structure to a class GridView requires. A
benevolent side-effect is that not each element in a table has to be allocated as object, which can
result in a major performance improvement for larger tables.

A typical example from the ET++ exploration environment is a scrolling list containing the
names of all available classes. The ET++ run time system already maintains a collection of meta
classes. Converting them to TextItems (a subclass of VObject) would be much more
cumbersome than to override DrawCell and accessing the Name method of the meta class.

StringGridView is a subclass of GridView for manipulating a matrix of cells containing
Strings. Again StringGridView makes no assumption about where the Strings are stored
but clients have to implement a GetString(column, row) and a SetString(column, row)
method. In the same way as the TextFields described above StringGridView maintains a
single instance of a TextView for implementing a memory efficient floating string editor.
Whenever keyboard focus is transferred to a cell (e.g. by clicking into it) the cell is overlaid with
the TextView which in turn allows editing of the cells contents.

Another specialized GridView is the CollectionView, which displays any collection of
VObjects as provided by the foundation classes in a tabular format. CollectionViews are used
for displaying tables with heterogeneous contents which require some polymorphic cell behavior
(Figure 13).

View
GridView

CollectionView
ObjectGridView
StringGridView

Figure 13. The GridView Hierarchy.
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6.3 Tree Views for Hierarchical Data

The TreeView renders a tree data structure (in fact a VObject tree) and implements simple
editing operations, for example moving nodes and collapsing/expanding subtrees. Different layouts
are supported. Each layout is represented as a separate object which can be plugged into a
TreeView (Figure 14). The TreeView class itself can be easily adapted to show any kind of
hierarchical data. To do so a client overrides the MakeChildrenIterator  and the
NodeAsVObject methods. MakeChildrenIterator is used to traverse the hierarchy.
NodeAsVObject defines the visual representation of a node in the hierarchy.

GraphView is a subclass of TreeView. It adds support for the layout of acyclic graph
structures. It uses a simple layout algorithm which builds on top of TreeView. GraphView
supports that the user can interactively rearrange a generated layout.

Object
TreeLayout

TopDownLayout
LeftRightLayout
IndentedLayout
CollapsedLayout
OptimizedLeftRightLayout

Figure 14. The TreeLayout Hierarchy.

7 Object-Oriented Modeling of System Dependencies
Portability was a major issue in the design of ET++. In order to be independent of a specific
environment, all environment dependencies were encapsulated by introducing an abstract system
interface defining a minimal set of low-level functionality necessary to implement ET++. These
functions can be subdivided into the following categories:
– window management and input handling,
– graphic system, graphic resource management (fonts, images, cursors),
– inter application communication,
– operating system services and resources.

Every category is defined as an abstract class which has to be subclassed for a specific
environment or output device. These subclasses are considered the system interface layer of ET++.
As a consequence, ET++ classes and applications do not contain any operating or window system
specific calls, which makes it possible to port ET++ to other environments with a minimum of
effort.

The two abstract classes System and WindowSystem define the entry point into the system
interface layer. Their responsibility is to instantiate new objects representing operating system
resources like files and directories or window system resources like ports (windows), font
managers, images and cursors.

In addition, the class System defines an abstract interface for multiplexing system events
coming from different sources. In a terminal emulator, for example, it is necessary to send and
receive data to or from another process as well as from the window system.

Due to the clean and abstract interface between System and WindowSystem, they are
completely decoupled, which allows the combination of any window system with any operating
system.

The hierarchy of port classes and their interfaces is another illustration of appropriate object-
oriented modeling of system dependencies (Figure 15).
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Port
PicturePort
PrinterPort

MacPictPort
PostScriptPort
// ...

WindowPort
XWindowPort
SunWindowPort
MacWindowPort
// ...

Figure 15. Port Hierarchy.

The root of this hierarchy is the abstract class Port, defining the graphical output primitives
common to all output devices. Subclasses of a Port override the abstract output primitives with a
device dependent implementation or they add device specific methods.

The PicturePort collects all drawing requests in a compact data structure which represents
the standard ET++ exchange format for structured graphics.

A PrinterPort adds abstract methods for dealing with an abstract printing device. Its
subclasses MacPictPort and PostScriptPort are implementations for generating Macintosh
PICT2 files and PostScript.

The abstract class WindowPort extends the output interface of a Port with methods for input
handling and window management. In essence every instance of WindowPort represents a single
window of the underlying window system.

The subclass XWindowPort  is an implementation of WindowPort  for X11,
SunWindowPort is for SunWindows, Sun’s now obsolete library-based window system; and the
MacWindowPort for the Macintosh. Due to dynamic binding of the device dependent methods,
ET++ is able to run applications on different window systems.

Usage of the port classes is straightforward: ET++ maintains a current output port to which all
drawing requests are automatically directed. Because updating of this current port is completely
under the control of the application framework, application-transparent printing is just a matter of
switching the current port to a printer port.

The design of ET++’s imaging model was influenced by two conflicting goals: it should be
sophisticated enough to ease its use in ET++ applications considerably but at the same time simple
and device independent enough to allow an implementation on top of various window systems with
minimum effort.

A consequence of the second goal was the decision of not supporting the inherently device
dependent and non portable raster operations found in most current window systems. These
operations are difficult to emulate (for example on a printing device like a PostScript printer) and
their visual effect on color systems is often unpredictable or unsatisfactory. Therefore, a subset of
the stencil/paint model found in the PostScript imaging language was adopted. This model can be
emulated on most window systems with little effort.

In PostScript all drawing is performed by first constructing an arbitrarily shaped path which is
then used for filling and stroking with a color, pattern, or more complex graphics. ET++ uses a
subset of this general concept.

This imaging model is embodied in 35 primitive methods which must be implemented for any
particular output device. The (stateless) interface to these primitives is cumbersome to use because
they all take their drawing attributes as parameters. A second (stateful) interface has been added
which maintains attributes such as fill and stroke pattern, pen position, etc., thereby providing an
alternative set of graphic functions with less parameters. Other interfaces exist to further reduce the
number of parameters for common usages. But, in the spirit of narrow inheritance interfaces, all
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these alternative interfaces are based on the primitives defined in the abstract Port and thus do not
enlarge the device interface.

A problem with the implementation of this simple and abstract device interface is that it is
sometimes difficult to use functions provided by an underlying window system suitable for
optimizing some special cases. Passing every single character through the device interface and the
clipping machinery of the window system just to get displayed, for example, is inefficient. This is
why most window systems provide special functions for drawing more than one character at a time
(a batch) in order to internally use one single optimized operation to clip and display the entire
batch. Because such optimizations are inherently window system dependent and cumbersome to
use, ET++ only provides methods to output a single character, but implements an abstract
mechanism to collect all characters in a window system dependent data structure which
automatically is flushed by ET++ at appropriate times.

8 Run-time Object Inspection4

The run-time structure of an ET++ application bears little resemblance to its static code structure.
The static code structure is frozen at compile-time and it consists of fixed inheritance relationships.
The run-time structure consists of a network of communicating objects. It is difficult to understand
the dynamic structure based on the static class hierarchy. Understanding the dynamic structure is
even more complicated in ET++ applications since the heavy use of object-composition.

To address this problem we investigated in exploration tools to support the analysis of the
dynamic object structure of an ET++ application. Every ET++ application has these tools optionally
built in; they execute in the same address space as the application.

8.1 Inspect Clicking

When exploring an application at run-time the first problem is how the user can define the focus of
interest. In other words there has to be convenient entry point into the object network. A graphical
application can profit from the fact that a lot of interesting objects are visible on the screen. We
therefore added a so called inspect click feature. An inspect-click is just a mouse click together with
some modifier keys. It allows clicking on any visible object on the screen for inspecting it. An
inspect click helps to answer the question “what is this object on the screen” from an
implementation point of view.

Figure 16 shows the dialog displayed after inspect clicking an object in an color picker dialog
box.

Figure 16. The Inspect Click Dialog.

4 ET++ also includes some browsers for the static analyisis of an application, that is the source code and the class hierarchy.
However, since this functionality is currently subsumed by Sniff (see below) we focus on the run-time object inspection support.
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The list on the left shows the path up the visual hierarchy starting at the clicked object and
ending at the window object of the dialog. An object is identified by its class name and an optional
identifier which defaults to the object’s address. Enumerating the chain of parent objects enables to
easily navigate to an object’s parent. Clicking the Inspect button brings up the Inspector on the
selected object.

8.2 The Inspector

The inspector has five panes (Figure 17). The top left pane shows the list of the application classes.
The number in parenthesis shows a snapshot of the number of allocated instances. Selecting a class
name of this pane fills the middle pane with the instances of the class. An object is identified by its
class name and an optional identifier which defaults to its address.

Selecting an object shows the object’s state in the bottom pane. This pane shows the instance
variables including the ones inherited from base classes. Pointer variables indicate their static type.
If the dynamic type differs from the static type it is shown as well (see for example, the
container instance variable in Figure 17). Clicking on a pointer variable dereferences the pointer
and shows the corresponding object. The buttons in between the top and the bottom panes support
to navigate back and forth along the path of visited objects.

Another interesting feature of the inspector is the possibility to query for other objects having a
reference to the currently inspected one. The result of such a query is shown in the top right pane.
Selecting an object from this list shows its state in the bottom pane.

Figure 17. The Inspector.

The Inspector is a helpful tool for navigating back and forth in the object network. However it
can only give a keyhole view since it can only show one object at a time. To get a better
understanding of the objects and their relationships the exploration environment also includes an
object structure browser.

8.3 The Object Structure Browser

The Object Structure Browser visualizes run-time relationships between objects. It shows an
object’s part-of hierarchy. For example, figure 18 shows the part-of hierarchy of a color picker
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dialog. A node represents an object and the thin lines connect the object with its parts. The object
structure browser can be invoked from the Inspector on the inspected object. Double clicking a
node in the object structure browser shows the corresponding object in the Inspector.

Figure 18. The Object Structure Browser.

The part-of hierarchy serves as a starting point for additional queries on object relationships. The
“Points To” and “Referenced From” menu items can visualize the outgoing and incoming
references of a selected object. The references are shown as additional (colored) lines between the
objects. The object structure has also some built-in knowledge of the ET++ class library and it can
also display event distribution paths and notification relationships.

8.4 Run-time support for the exploration environment

The exploration tools described above require some additional run-time support. The functionality
to find all the instances of a class is based on an object table. This table is maintained by the root
class Object. Its constructor adds an entry to this table and its destructor removes it. The
maintenance of this table can be turned of for applications which are in production use. The object
table is also used to find objects pointing to a specific object.

The determination of an object’s parts requires some help from the class implementor. The root
class Object defines a CollectParts method which can be overridden by subclasses to let the
tools know which object references point to an object’s parts. Another instrumentation method is
InspectorId which is overridden to define an additional textual identifier for the instances of a
class. This identifier is derived from the values of an object’s instance variables. It is shown in both
the Inspector and the Object Structure Browser.

9 ET++ Applications
A class library in general and a framework in particular has to be validated by real applications.
During the development of ET++ we switched back and forth between the roles of class library
developers and class library clients. The result of this is a set of samples which are distributed
together with ET++. This section gives a short overview of the samples followed by two more
comprehensive applications .
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9.1 Samples

The samples address two different needs. First they are used by us to validate the design of the class
library and second they are used by developers to learn the class library.

The samples include both simple entry-level applications and more comprehensive ones. It was
an important goal of ET++ to cover the entire spectrum. During the evolution of the class library we
always focused on making the applications simpler and reduce their code bulk.

The entry-level applications include:
– Nothing, the minimal ET++ application,
– Hello, a graphical Hello World program,
– Calculator, a simple calculator,
– TwoShapes, ThreeShapes, minimal drawing applications,
– Miniedit, a simple text editor.

The more advanced applications are:
– FileBrowser, a program editor combined with support for navigating in the directory hierarchy,
– Spreadsheet, a simple spreadsheet which uses the TCL interpreter [Ous94] for expression

evaluation,
– Er, a simple diagram editor for entity-relationship diagrams,
– IconEdit, an icon editor which understands a large number of image formats,
– Draw, a drawing application,
– Write, a simple word processor.

9.2 Sniff

Sniff is a pragmatic C++ programming environment providing browsing, cross-referencing, design
visualization, documentation, and editing support. The main goal in developing Sniff was to create
an efficient and portable C++ programming environment which makes it possible to edit and
browse large software systems textually and graphically with a high degree of comfort, and without
using large amounts of system resources [Bis92].
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Figure 19. A Screen showing different windows of the C++ Programming Environment Sniff.

Sniff also integrates a front-end for the gdb debugger. The integration of etgdb was achieved by
using the ET++ provided inter-application-communication services.

Figure 20. An ET++ Front-end for gdb.
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9.3 SwapsManager

The SwapsManager project [Egg92] used ET++ to implement a custom application which helps a
trader in pricing a financial instrument called a swap. The application is built around the notion of a
domain specific desktop. In contrast to more conventional desktop environments which only present
icons for documents and folders this desktop consists of iconic presentations from the trading
domain. The top right window in Figure 21 illustrates the iconic representations for swaps,
portfolios (collections of swaps), yield curves (yields for a set of maturities), and scenarios
(possible interest changes applicable to a yield curve). The icons can be manipulated by drag and
drop. For example, to add a swap to a portfolio the trader drags the scenario icon onto a yield curve.

As in common desktop environments an iconic representation can be opened and inspected in a
window. The bottom right window shows a more conventional form based interface for editing the
data of a swap object. The left window shows a graphical editor opened on a yield curve object.
This editor provides a palette of tools for changing and inspecting the curve. Manipulating the curve
creates an interest rate scenario object which shows up on the desktop. In addition to changing the
curve the trader can also apply any existing scenario by dragging a scenario icon onto a yield curve
icon. Each of these manipulations triggers a recalculation of all dependent data which enables the
trader to easily perform a risk analysis for different scenarios.

Figure 21. The swaps trading workspace of the ET++SwapsManager

A swap is just one of many financial instruments. However, each of these instruments requires a
similar calculation engine to analyze the price and value. To cover more than one of these
instruments a framework for building calculation engines evolved [Bir93].
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10 Experience
This section describes the experience gained while working with ET++ and its implementation
language C++.

An object-oriented application framework transfers a lot of control flow from client code into the
class library. This characteristic allows the addition of new functionality without any modifications
in existing applications and with little programming effort. Especially when a system is well
factored, a large amount of leverage is available. The implementation of the inspect-click (see
section 8.1) is a good example: implementing this mechanism only required the addition of a few
lines of code to the existing event distribution mechanism centralized in the class VObject (the
root of all graphical classes). The new code filters out the special key combination and calls the
Inspect method of the underlying object. This code is automatically inherited by all applications
and implies no programming effort at all.

Using ET++ in student projects revealed that they need a substantial amount of training until
they come up with good reusable classes. But how to teach and train students to design reusable
classes remains an open issue.

From a project management point of view it seems that the small ET++ project team (two
computer scientists) was a big help in reducing code redundancies and toward the construction of a
homogeneous system.

Using C++ as the implementation language of ET++ has worked well. The well known
efficiency of C++ was a very favorable background for the implementation of ET++. Indeed, we
never experienced efficiency problems due to dynamic binding. However, we are very conservative
in using C++ language features. We avoid virtual base classes and multiple inheritance altogether.
Learning a comprehensive class library is already hard enough and we don’t want to increase the
complexity by using all possible language features. In addition, since portability was an important
constraint reducing the number of language features facilitates switching between different C++
compilers.

C++ lacks support for garbage collection, which was sometimes a burden during the
development of ET++. A general garbage collector, on the other hand, would impact the efficiency
of C++ programs. Due to the single-rooted hierarchy structure of ET++, the class Object was
instrumented to gather some statistics about memory allocation. These statistics were indispensable
to find memory leaks.

11 Availability
ET++ 3.0 and its tools and documentation is distributed in the public domain. It is available by
anonymous ftp from ftp.ubilab.ubs.ch in the directory pub/ET++. The current release of ET++ runs
under X11, SunWindow, and the Macintosh.
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